Mobile NodelID based P2P Algorithm for the Heterogeneous Network

Kyungbaek Kim and Daeyeon Park
Department of Electrical Engineering & Computer Science,
Division of Electrical Engineering,
Korea Advanced Institute of Science and Technology (KAIST),
373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea

E-mail: kbkim@sslab.kaist.ac.kr

Abstract

A lot of research papers discussed the Distributed Hash
Table (DHT) based p2p algorithms to promise that idle re-
sources may be efficiently harvested. However, p2p systems
are composed of components with extremely heterogeneous
availabilities and to handle churn, the system will gener-
ate the heavy information maintenance traffic to keep the
efficiency of the DHT based p2p algorithms. In this paper,
we suggest the mobile ID based p2p algorithm to reduce
the overhead by exploiting the heterogeneity of participant
nodes efficiently. Unlike the DHT based p2p algorithms, the
node ID of a node changes according to its characteristic to
support the p2p system efficiency and each nodes takes the
different responsibility in accordance with its node ID. We
classify nodes into the two types according to the charac-
teristics of nodes : the reliable nodes and the leaf nodes.
The reliable node has the load-balanced ID to balance the
loads and the leaf nodes has the load-free ID to reduce the
responsibility. We examine the efficiency of our p2p algo-
rithm via a event driven simulation and show that the infor-
mation maintenance traffic reduces and the routing process
is more efficient.

1. Introduction

In these days, peer-to-peer systems have become an ex-
tremely popular platform for large-scale content sharing.
Unlike client/server model based storage systems, which
centralized the management of data in a few highly reliable
servers, peer-to-peer storage systems distribute the burden
of data storage and communications among tens of thou-
sands of clients. The wide-spread attraction of this model
arises from the promise that idle resources may be effi-
ciently harvested to provide scalable storage services. A

lot of research papers discussed the Distributed Hash Ta-
ble (DHT) based p2p routing algorithms (Chord, Pastry,
Tapestry and CAN) [5][3][7][2].

In contrast to traditional systems, peer-to-peer systems
are composed of components with extremely heterogeneous
availabilities - individually administered host PC’s may be
turned on and off, join and leave the system, have inter-
mittent connectivity, and are constructed from low-cost low
reliability components. For example, one recent study[4]
of a popular peer-to-peer file sharing system found that the
majority of peers had application-level availability rates of
under 20 percent and only 20 percent nodes have server-like
profiles. In such an environment, failure is no longer an ex-
ceptional event, but is a pervasive condition. At any point
in time the majority of hosts in the system are unavailable
and those hosts that are available may soon stop servicing
requests.

A big issue in current DHT based p2p algorithms is the
high overhead of maintaining DHT routing data structure
and the stored data. When a node joins/leaves the system,
the affected routing data structure on some existing nodes
must be updated accordingly to reflect the change. More-
over, most p2p systems employ some form of the data re-
dundancy to cope with failure and when the membership
of nodes changes, these systems generate huge overhead of
compulsory copies for the data availability. Especially, for
nodes which join/leave the systems frequently, the p2p sys-
tem will generate a lot of routing information update traffic
and data copy traffic. It is not only increase the consump-
tion of the network bandwidth, but also affect the efficiency
of DHT based routing algorithms. Until now, DHT algo-
rithms are not widely used in commercial systems yet, most
p2p file sharing systems are still using non structured p2p
mechanisms.

In this paper, we suggest the mobile ID based p2p algo-
rithm to reduce the information maintenance overhead by

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second International Conference on Embedded Software and Systems (ICESS’05)
0-7695-2512-1/05 $20.00 © 2005 IEEE

exploiting the heterogeneity of participant nodes efficiently.
Unlike the DHT based p2p algorithms, the node ID of a
node changes according to its characteristic to support the
p2p system efficiency and each nodes takes the different
responsibility in accordance with its node ID. We classify
nodes into the two types according to the characteristics of
nodes : the reliable nodes and the leaf nodes. The reliable
node which is the more stable and more reliable node acts
as the more important role of the routing and the replication.
The leaf node which joins/leaves very frequently acts as the
simple role to minimize the information maintenance traf-
fic. The reliable node has the load-balanced ID to balance
the loads and the leaf nodes has the load-free ID to reduce
the responsibility.

The reliable nodes are more stable and more reliable
nodes and these nodes act as more important roles such as
routing and replication. The reliable nodes have Load Bal-
anced ID (LBID) which is evenly distributed and balances
the workload of each reliable node. This LBID is dynami-
cally assigned and the LBID routing table which help for
routing to any reliable nodes is also organized when the
LBID is assigned. The leaf nodes join/leave very frequently
on the system and the majority of the participant nodes are
these leaf nodes. These nodes act as simple roles such as
servicing the request and helping the reliable nodes. The
leaf nodes have Load Free ID (LFID) which makes the ID
region of a leaf node as small as possible and reduces the
effect of the dynamic membership change which increases
the information maintenance overhead. According to these
basic behaviors, because the frequently joining/leaving of
nodes occurs as the leaf nodes which make little overhead,
we can reduce the overhead of the whole p2p system and
achieve more efficient routing without the frequent updates.

Moreover, we exploit the plentiful information of the
availabilities and reduce the data management traffic for the
dynamic membership. That is, more available nodes repli-
cates data, more data traffic we can reduce when the nodes
frequently join/leave.

This paper is organized as follow. In section 2, we
describe the DHT based p2p algorithm and the other re-
searches which try to reduce the overhead. Section 3 in-
troduces the detail of the mobile ID based p2p algorithm.
The simulation environment and performance evaluation
are given in section 4. Finally conclude in section 5.

2. Background

There are many DHT based p2p algorithms such as
Chord, Pastry, Tapestry and CAN [5][3][7][2]. Each node
has a DHT which is a small routing table and any node can
be reached in about O(logN) routing hops where the N is
the total number of nodes in the system. To achieve this
efficient and bounded routing, there is some rules for the

0 "D region
g assigned by |
i1 | NodelD
Bc® - 57
49‘614 -..._.'mp ()
(m A
® e 3
L] L]
L] 2
& L
J; .;_-.J ® H{al.mp3) =2 key

H(4) =3 : Node ID

Figure 1. Overview for the general DHT based
P2P algorithm

organizing the participant nodes. First of all, each node has
a unique node ID which is taken by hashing any identifier
of a node, and according to its node ID it maps on the ID
space where the nodes and the objects are co-located with
the node IDs or the keys which are the hashed value of the
nodes or the objects. In the figure 1, the node id of node A is
3 and it maps on the position for 3. After the mapping of the
node id, each node knows its ID region from the next posi-
tion of its previous node ID to its node ID and each node
should store and service the objects for its ID region. In the
figure 1, node A takes its ID region from 1 to 3 because its
node id is 3 and its previous node B locates on 0 and when
any node want to get a.mp3 whose key is 2, node A gets the
request for it.

Though these well-organized rules make the routing of
the p2p system efficient and bounded, a big issue in current
DHT based p2p algorithms is the high information mainte-
nance overhead of maintaining DHT routing data structure
and the stored data. Because its node id is already given
by the hashing function and its position on ID space is al-
ready fixed, when a node joins/leaves the p2p system, the
ID region of its neighbor nodes changes and the stored data
should be copies for the new ID region to service the right
and reliable object, and the update of the routing table is
also needed. In figure 1, if node A leaves, the ID region of
node D changes and the object from 1 to 3 should be copied
from node A to node D. Moreover, the affected routing ta-
ble which has the entry with node A must be updated. In
this case, one recent research[4] of a popular p2p file shar-
ing system found that 80 percent of total nodes of a p2p sys-
tem join/leave very frequently and the majority of nodes has
the application-level availability rate of under 20 percent.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second International Conference on Embedded Software and Systems (ICESS’05)
0-7695-2512-1/05 $20.00 © 2005 IEEE

ID region
of areliable |

Figure 2. Ideal state

In such an environment, the information maintenance over-
head is getting worse and this overhead discourages that the
DHT based p2p systems are deployed to the real world.

Some researches emerged to prevent the information
maintenance overhead by using the heterogeneity of partici-
pant nodes. In the paper [6], they manage the DHT which is
certain amount of system routing information with the avail-
ability of each node which is evaluated during the time it
joins the system. They proffer to add stable nodes into rout-
ing data structures instead of frequently join/leave nodes.
The paper [1] tries to reduce the compulsory data copies
for joining/leaving nodes with the node availability. They
manage the availability of each data by evaluating the avail-
ability of each node which store the data. The common fea-
ture of these approaches is that the stable nodes take most
system workload and this reduces the information mainte-
nance overhead of the DHT based p2p algorithms. How-
ever, in these approaches, though the stable nodes get too
much workload, they lack the explicit method which bal-
ances the workload of each stable node. In figure 2, the
large sized computer means the stable and reliable node and
the small sized computer presents the normal node which
frequently joins/leaves. Because each reliable node already
has the fixed node ID and the space between any two re-
liable nodes is unbalanced, each node get the unfair work-
load. Moreover, the fixed node id still affects the ID region
of a node and the joining/leaving for a node makes the com-
pulsory copies too. In our solution, the mobile ID based p2p
algorithm, each reliable node gets the balanced ID region
and workload and normal nodes which join/leave very fre-
quently affects the information maintenance overhead little
like the right side of the figure 2.

3. Mobile ID based P2P Algorithm

3.1 Overview

Previous DHT based p2p algorithms lack the explicit
methods for exploiting the heterogeneous characteristics of
participant nodes. The main reason of this lack is the static
ID which makes the location of a node fixed on the ID

2 ID space | LBID Table
- [} 00°** LBID | Node
4 - 1] 10 D
- 00011 R 2 | o1 ¢
00101 M
LFID Table

10111 b |
00111 B

LFID | Node
00
, ‘ o1*| 011 | R
10+] 01
10°] 101 | ™

Figure 3. Overview of Mobile ID based P2P
Algorithm

space, and the system with the static ID is not flexible. We
address this problem with the mobile ID which changes ac-
cording to the characteristics of a node. We classify the
participant nodes into two types : reliable nodes and leaf
nodes. The reliable nodes are more reliable and more sta-
ble nodes and the leaf nodes join/leave very frequently. The
node ID of a reliable node is well distributed on the ID space
and makes that the each reliable nodes gets fair ID region
and balanced loads. The leaf node gets the node id which
makes its ID region as small as possible to minimize the
information maintenance overhead for joining/leaving of it.

Figure 3 shows the overview of the p2p system that uses
the mobile ID based p2p algorithm. The participant nodes
are on the 2° ID space and the number of bits for a node
ID is 5. The node ID is consist of the Load-Balanced ID (
LBID) and the Load-Free ID (LFID) and ,in this example,
the first 2 bits of a node ID means the LBID and the other
3 bits is for the LFID. In this figure, the large sized com-
puter means the reliable node and the small sized computer
means the leaf node. To distribute the participant nodes effi-
ciently, we divide the ID space into many sub-regions which
are the balanced ID regions. Each sub-region has one reli-
able node which represents this region and many leaf nodes
which assist the reliable node. That is, the reliable node is
mainly responsible for the objects for the sub-region and the
leaf nodes service the objects for the small ID region which
is assigned by both of their node id and the LFID table on
behalf of the reliable node. For example, when any node
wants to get an object whose key is 00001, the reliable node
B takes the request, however when any node tries to get an
object with 00010, the leaf node R takes the request to assist
the reliable node, because the ID region of node R is from
00010, the start of the LFID slot to 00011, its node ID. All
nodes on the same sub-region have the same LBID and they
are identified by the LFID. The all bits of LFID for the re-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second International Conference on Embedded Software and Systems (ICESS’05)
0-7695-2512-1/05 $20.00 © 2005 IEEE

‘RN
(Bootstrap) (Transient }

Figure 4. Three phases of LBID assignment

liable node are set to 1 and the LFIDs of other leaf nodes
change according to the behaviors of them.

The LBID table and the LFID table is used to lookup the
location of a node or an object. When a node joins, we get
its static node ID by hashing its identifier. The first thing is
to route to the right sub-region according to the LBID table.
In this case, a node which gets a join request forwards it to
the next node which is the node of the most prefix matched
entry of the LBID table. After finding the sub-region, the
LFID table assign the right LFID to the new node. This join
process is only for the leaf nodes and in the next section,
we show the detail of the whole join process. Moreover,
when a node tries to lookup an object, it sends a lookup
request with the object key which is its hashed value to any
other participant node. Like the case of the join process, it
forwards to the right sub-region by the LBID tables and find
the node whose ID region is responsible for the key by the
LFID tables. Basically, we use the hashed values of both
of nodes and objects, but they are used only for finding the
location of them. When the nodes join to the p2p system,
their ids are newly assigned by the p2p system and change
according to its characteristics for the nodes to be locate on
fit places.

3.2 Mobile Node ID

Load Balanced ID is the identifier for the reliable node.
Each reliable node is assigned this LBID and it is respon-
sible for storing and servicing the request for the fair and
balance ID region. For this, the LBID is well distributed
and evenly divided. Moreover, because there is no routing
information, we need LBID routing table which helps rout-
ing to any reliable nodes.

This LBID is assigned after a node finds the any reliable
nodes. If there are not enough reliable nodes, new node
is assigned the LBID and acts as the reliable node without
its real characteristics. In this case, we call the bootstrap
phase like figure 4. In this phase, a new reliable node is
assigned the right LBID and create the LBID routing table
according to its LBID. Each reliable node has the state in-
formation such as Join, Level, Full and Leaf. When the Join
bit sets to 1, this node can process the join request and cre-

If No Reliable Node
LBIDew = set all bits of LBID to 1
level = 1
Else
If{ Join){
If(Level < Levelthres){
/1 Accept Join
LBIDnew = set exclusive bit of Leveln bit of LBIDtarget
LBID RT entry Update
Level RT entry = LBIDwew
Level ++

b
¥
Else{
If{ Temporal Routing Entry)
Forward Join request to this entry
Else If{ There is no temporal routing entry)
If{ sending node != last RT entry)
Forward Join request to next RT entry of sending node
Else
/f finalize
Sending Notification of Fnalization to all of RT entries

Figure 5. Basic algorithm of the LBID assign-
ment

ate new LBID for the new node. The Level bit is the depth
value which means how many join requests is processed in
this node, that is, how many routing entries are filled. The
Full bit sets to 1 after the enough reliable nodes get the leaf
nodes. The Leaf bit means the number of leaf nodes which
is connected to a reliable node. According to these state
information, LBID is assigned automatically and correctly.

The basic algorithm for the LBID assignment is in figure
5. When a node joins to the system and there is no reliable
node, the new node has the new LBID whose all bits set to
1. Otherwise, when any reliable node gets a join request,
it creates new LBID based on the two information which
are its LBID and the Level bit. That is, the levely;, bit of
LBID sets to the exclusive bit and this is the new LBID.
This simple rule makes the difference of LBID of any two
closest reliable nodes even and each reliable node gets the
balanced and fair ID region. The LBID routing table which
is used for routing to any reliable nodes is also organized
when the new LBID is created. The basic rule is the Ny,
entry of the routing table has the node information whose
Ny, bit of LBID is exclusive to the owner’s LBID. In fig-
ure 6, the node whose LBID is 0011 has the LBID rout-
ing table whose 1st entry has the information for the node
C whose LBID is 1011 and 2nd entry has the information
for the node B whose LBID is 0111. These bit-wise exclu-
sive entries make the LBID routing table and any node can
reach any other nodes. This LBID routing table have logN
of routing entries and the maximum routing hops are lim-
ited to log N, where N is the number of LBID bits. When
there is not proper node information for a routing entry, we

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second International Conference on Embedded Software and Systems (ICESS’05)
0-7695-2512-1/05 $20.00 © 2005 IEEE

Ex) 110 0011

LBID Node
0 001 E
1 101 C
2 011 B
3 000 F

» Node Itself

» With 1 count, Next : 3'¢ Entry Routing on C
» With 1 count, Next : 15t Entry Routing on B
» With 2 count, Next : 2"¢ Entry Routing on F

Figure 6. LBID Routing Table and finalization
rule

set the temporal routing entry. This temporal routing en-
try has the node information which does not matched but
closest to the right node information. When the node which
has the temporal routing entry get a join request, it forwards
the join request to the temporal node which is ready to pro-
cess join request. After this forwarding process, new node
replaces the temporal routing entry and the LBID routing
table is composed completely.

After the enough number of reliable nodes join, every re-
liable nodes set the Full bit to 1 and ready to get leaf nodes.
To confirm that the all reliable nodes set Full bit to 1, we
need finalize mechanism for the bootstrap phase. When a
join request route to the reliable node by the LBID routing
table and every node can not process the join request, the
final node knows that the reliable nodes are assigned fully
and the finalize mechanism should start. In this case, each
node just does not know the whole of the reliable nodes, but
only knows the [og N routing entries. According to this, one
node can not notify to all node and needs the efficient and
systematic notification. To achieve this notification, a node
sends the notification with TTL count value to every nodes
which is on the routing table. Like figure 6, the notification
to the Ny, routing entry has N-1 TTL count value, except
the 1st entry whose notification has 1 TTL value. The target
node which gets the notification reduces the TTL value by
1 and sends the notification to the NV — 1, routing entry,
where N is the position of the target node on the routing
entry of the sending node. When the target node is 1st rout-
ing entry of the sending node, it sends the last notification
message to the last routing entry.

Load Free ID is the identifier of the leaf nodes. Because
each leaf nodes are unreliable nodes which join/leave very
frequently, we should minimize the management cost for
the effect of the dynamic membership change by assigning
little load to leaf nodes. At first, LFID is close to 0 and
when the access time of the leaf node increases, LFID also
increases for the node to get more load and help the p2p
system.

After the bootstrap phase, the transient phase starts. In
this phase, each node joins in the system as the leaf nodes.
A new node route to a reliable node by the LBID of the
unique node key. When the Full bit of the reliable node

LFID Slot LFID Slot LFID Slot LFID Slot
LFID Node LFID Node LFID Node LFID Node|
00 00000 L 00 00001 L 00 00010 L fullf[00 o011 L |
(3 X X | = |01 01000 M |01 01001 M | — —p|01 01010 P
10 X X 10 X X 10 10000 N 10 X X
11 X X 11 X X 11 X X 11 11001 S

Figure 7. LFID slot and its change according
to the lifetime

is 1, this node processes the join request and increases the
number of the Leaf bit by 1. To help assigning LFID, every
reliable node has the LFID slot which divide the id space
and each slot manage the leaf node information. The figure
7 shows the LFID slot and the change of them according to
time. When node L joins, the first slot which is 00 slot as-
sign the LFID 00000 to node L. After time pass, the LFID
of node L change to 00001 and new node M gets 01000 for
the second slot which is 01 slot, and so on. Each node is re-
sponsible for storing and requesting the data for the id space
from the LFID 000 to the current LFID for each slot. When
the LFID changes the data copy occurs, but this traffic is
smaller than the management traffic of previous DHT, be-
cause these leaf nodes are free for data availability. Though
each LFID increases according to the time, it can not in-
crease more than the slot size.

3.3 Data Management

The general servers have very high availability and the
data management on them is more simple and there is few
overhead. However, in the p2p systems, unlike the gen-
eral servers, the participants have very low availability. In
this case, to preserve the availability of data, there are many
replications for the data. These data are the basic p2p sys-
tem information such as routing information and node in-
formation and the object data which is managed by each
nodes which is responsible for some ID region. Previous
DHT based p2p algorithms manage the replication by us-
ing the sequential node list such as the successor list for
the chord and the leaf set for the pastry. This approaches
take too much overhead to preserve the replications when
the join/leave occurs frequently.

In our p2p algorithm, each reliable node knows not only
the the availability of itself, but also the availabilities of
the other nodes such as leaf nodes and LBID routing entry
nodes which is managed by the reliable node. In this case,
we exploit the plentiful information of the availabilities to
preserve the data availability of each sub-region above the
target availability and reduce the data management traffic
according to the dynamic membership. That is, more avail-
able nodes replicates data, more data traffic we can reduce
when the nodes frequently join/leave.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second International Conference on Embedded Software and Systems (ICESS’05)
0-7695-2512-1/05 $20.00 © 2005 IEEE

Availability is the prediction value how long a node is
alive. We use the Mean Time To Failure and the Mean Time
To Recover to estimate the node availability. MTTF is the
average value how long a node is alive after it joins and
MTTR is the average value how long a node is sleep after it
leaves. We can get MTTF and MTTF by using the last join
time and the last leave time. The average value of MTTF
and MTTR is obtained by the sum of the weighted value
estimation process. Any node gets its availability by using
this process and notify the availability when it joins the p2p
system. Moreover, after the node joins, it periodically esti-
mates its availability and notifies the new value for the fresh
information.

Data Availability means the total availability when the
multiple nodes have the data. This availability is obtained
by subtracting the probability of that all nodes which have
the data leave from 1. That mean if only one node is alive,
the data is available. The follow equation shows it.

Each reliable node manages the LBID routing table and
the objects which is in the balanced ID region and knows
the availability of the leaf nodes and routing entry nodes.
To keep the data availability over the target availability, the
reliable node manages the data replication set which is com-
posed of more available nodes among the leaf nodes and
routing entry nodes. That is, the reliable node replicates
data to the more available leaf nodes or routing entry nodes.
This behavior reduces the data management cost which is
caused by the dynamic membership change. In the figure
8, when the leaf node P leaves, the reliable node just up-
dates the LFID slot, and when the leaf node Y joins, the
reliable node just updates the LFID slot and copies the data
of new id range which the node Y is responsible for. That
is, the joins/leaves of the leaf nodes make little manage-
ment cost. However, when the node L which is the one of
the data replication set and the total availability decrease be-
low the threshold value, it needs too much cost such as data
copies, LFID slot update and replication data update. But,
this leave of reliable node occurs rarely and does not affect
the management cost very much.

When the reliable node creates the data replication set, it
selects more available nodes among the leaf nodes and rout-
ing entry nodes. In this case, most of the replicate nodes
are the routing entry nodes which are the reliable nodes.
However, these reliable nodes do too much jobs and we
should prevent the additional overhead for them. Moreover,
when the reliable nodes leave or fail, we need the alternative
nodes which replace the left or failed reliable node with fast
response time.

To achieve these, we select some leaf nodes for the data
replication set. These more available leaf nodes is called the
candidate nodes. These candidate nodes are included in the
data replication set, and replicate the routing information
such as the LBID routing table and the LFID slot and the

Node H LFID Node Replicate Avail Node H
(0.85) |00 00111 L 1 07

LFID Node Replicate Avail
(0.85) |00 00111 L 1 07

Data |01 01010% 0o 04 pata |01 X X X X
(0.095) |10 X X X X (0.995) |10 10001 ¥ 0 01
11 11001 S 0o 02 11 11100 S 0 05
RT3 0001 F 109 RT3 0001 F 109

New node Y Join -> Do nothing
Just update Table
and small data Copy

P leaves/fails > Do nothing
Just update Table

Node H LFID Node Replicate Avail Node H LFID Node Replicate Avail
(085) oo oo1139y 107 (085) 100 x x x x
pata |01 X X X X |::>Data o X X X X
(0.085) |10 10001 ¥ 0 01 (0.992) |10 10001 ¥ 0 01
11 11100 S 0 05 11 11100 S 105
RT3 0001 F 109 RT3 0001 F 109

L leaves/fails > Select New Replication which has the biggest Availability

Figure 8. Data Replication Set and its opera-
tion

data which is in the responsible range of the reliable node.
When the reliable node leaves or fails, the most available
candidate node replace it by changing leaf node id to reli-
able node id. This make the failure recovery process easier
and faster.

4. Performance Evaluation
4.1 Simulation Setup

We make our p2p simulator which emulates the node be-
havior on the application layer. Each nodes has their own
characteristics such as reliable nodes and leaf nodes. To
make this dynamic characteristic, we use poison distribu-
tion whose average is 4, and to assign join/leave duration of
a node, we use exponential distribution. We implement the
DHT based p2p algorithms such as pastry, chord and our
mobile ID based p2p algorithm. We use 160 bit ID space
to identify nodes and the number of LBID bits change ac-
cording to the number of the reliable nodes which are as-
signed by the total number of the participant nodes. In the
next, DHT means the DHT based p2p algorithms and BA-N
means the mobile ID based p2p algorithm which has the N
percent of total nodes as the reliable nodes.

4.2 Dynamic Node Characteristics

Figure 9 shows the life distribution of participant. In this
figure, the lifetime of 80% of total nodes is below 60% of
total simulation time, that is, only 20% of total nodes have
the reliable server-like profile. This characteristics of nodes
are assigned when the nodes are created and never changed
before the end of the simulation. This behavior decide both
of the on-time which is the time for which the nodes are
on the p2p system and the off-time which is the time for
which the nodes are off. This distribution is similar to the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Second International Conference on Embedded Software and Systems (ICESS’05)
0-7695-2512-1/05 $20.00 © 2005 IEEE

0.75

CDF (%)

0.25

2T
"

[
0 10 20 30 40 50 B0 70 80 90 100
Life Time (%)

Figure 9. Life distribution of Nodes

1200 p

1000

800

600

400

Data Traffic (MB)

200 —

128 256 512 1024 2048 4096 8192
Number of Node (#)
[~ DHT - BA-20 BA-10]

Figure 10. Comparison of Bandwidth Usage

real world. Recent researches measure the life distribution
of the p2p nodes and show the similar graph like the figure
9. The next results are based on this characteristics.

4.3 Bandwidth Usage

The main problem of the current DHT p2p is the high
management cost. In the figure 10, we show how the mo-
bile ID based p2p algorithm reduces the management cost.
To evaluate this cost, we assume that each node obtain same
number of objects, that is, if the total number of nodes is
100 and the total number of objects is 10000, and if the to-
tal number of nodes is 200, the number of objects is 200000.
In this case, the our p2p algorithm reduces the data manage-
ment cost extremely. The main reason of this improvement
is the behavior of leaf nodes. In DHT p2p, the frequent
join/leave of leaf nodes cause the compulsory copies and
update cost for routing information. However, in our p2p al-
gorithm, the dynamic behavior of leaf nodes does not affect
the data availability and the routing efficiency. According
to these, the BA p2p can reduce more management traffic.
Moreover BA-10 reduces more traffic than BA-20. On the
same node characteristics, the BA-20 needs more reliable

Lookup Hops (#)

128 256 512 1024 2048 4096 8192
The Number of Node (#)
|~ DHT -~ BA-20 BA-10]

Figure 11. Comparison of Lookup Hops

nodes than BA-10, and the average availability of the reli-
able nodes of the BA-20 is less than the BA-10. In the BA-
20, the transitions for the reliable nodes occur more than the
BA-10 and BA-20 exhausts more network bandwidth than
BA-10. To prevent this side effect, we need the adaptive
method which manage the number of reliable nodes accord-
ing to the state of the nodes and this work is our ongoing
job.

4.4 Lookup Hops

In the p2p system, the lookup cost is also important pa-
rameter for the scalability because there are too many par-
ticipants. Figure 11 shows the comparison of the lookup
hops. For all algorithms, the lookup hops are proportion to
the Log N, where N is the total number of nodes. The mo-
bile ID based p2p algorithm performs more efficient lookup
than normal DHT. The reason is that the our p2p algorithm
uses the reliable nodes to route the lookup request and the
number of these nodes are much less than the total nodes.
These reliable nodes are more stable and more powerful
than other nodes and they are durable nodes for the many
routing requests. Additionally, the leaf nodes assist the reli-
able nodes to take the request for the ID region and the load
of the reliable node are reasonable.

4.5 Load Balance

The figure 12 shows the load distribution for the total
nodes. In this figure, we define the load as the number
of lookup requests. As the nature of the previous DHT
based p2p algorithm, the load are distributed to the whole
of nodes by the shape of the normal distribution. This be-
havior causes the heavy information maintenance overhead
because the nodes which join/leave very frequently can be
responsible for the big ID region. On the other hand, in our
mobile ID based p2p algorithm, the load distribution can be
classified into the reliable nodes and the leaf nodes. About

Proceedings of the Second International Conference on Embedded Software and Systems (ICESS’05)

0-7695-2512-1/05 $20.00 © 2005 IEEE

YF]',F.

COMPUTER

SOCIETY

% e e
£ o —
gors —
Q o
s
S 05
[
Q o
= ;
£ e
8 0.25 /
T
o >
-
0
0 0.5 1 1.5 2 2.5 3

Lookup Requests / AVG Lockup Requests

[~ DHT - BA-20

BA-10]

Figure 12. Load distribution for the total

nodes

0.75

Percentabe of nodes(%)
o
w
L/

Lookup Requests / AVG Lookup Requests

|~ DHT ~BA-20

BA-10]

Figure 13. Load distribution for the reliable

nodes

easily and efficiently because the server-like nodes locates
for the reliable nodes automatically.

5. Conclusions

In this paper, we suggest the mobile ID based p2p algo-
rithm to reduce the information maintenance overhead by
exploiting the heterogeneity of participant nodes efficiently.
Unlike the DHT based p2p algorithms, the node ID of a
node changes according to its characteristic to support the
p2p system efficiency and each nodes takes the different
responsibility in accordance with its node ID. The reliable
node which is the more stable and more reliable node acts
as the more important role of the routing and the replication.
The leaf node which joins/leaves very frequently acts as the
simple role to minimize the information maintenance traf-
fic. The reliable node has the load-balanced ID to balance
the loads and the leaf nodes has the load-free ID to reduce
the responsibility. This algorithm is very good for the p2p
system on the heterogeneous environment which is consist
of the various kinds of nodes such as servers, workstations
and PCs, because it locates the server-like nodes at the po-
sition for the reliable nodes and can exploit these nodes ef-
ficiently. However, our algorithm may over-provision for
the reliable nodes and this may decreases the performance
of our algorithm. The adaptive method for the whole state
of nodes to keep the proper number of reliable nodes is our
ongoing job.

References

[1] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M.

75 percent of nodes have less load than other nodes because
these nodes act as a leaf node which join/leave frequently
and they takes the responsible for small ID region which is
assigned by the LFID. Otherwise, the reliable nodes take
much more load because they are alive for a long time and
represent for the sub-region. The reliable nodes gets more
loads than the leaf nodes and we need to balance the load
of the reliable nodes for the fairness. The figure 13 shows
the load distribution for the reliable nodes. The mobile ID
based p2p algorithm balances the load more than the pre-
vious DHT based p2p algorithm because the sub-region is
distributed evenly and each reliable node is represent for
a sub-region. Some jitters are appeared because the leaf
nodes assist the reliable nodes and the transitions for the re-
liable nodes occurs. This feature which classifies the load
according to nodes is very useful for the p2p system on
the heterogeneous network which is consist of the various
nodes such as servers, workstations and PCs. Some p2p
approaches need the server-like components to increase the
efficiency, and our algorithm can exploit these components

(2]

(3]

(4]

(5]

(6]

(7]

Proceedings of the Second International Conference on Embedded Software and Systems (ICESS’05)
0-7695-2512-1/05 $20.00 © 2005 IEEE

Voelker. Total recall: System support for automated avail-
ability management. In NSDI, pages 337-350, 2004.

S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and
S. Shenker. A scalable content-addressable network. In SIG-
COMM, pages 161-172, 2001.

A. L. T. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. In Middleware, pages 329-350, 2001.

S. Saroiu, P. Gummadi, and S. Gribble. A measurement study
of peer-to-peer file sharing systems. In MMCN, 2002.

I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup ser-
vice for internet applications. In SIGCOMM, pages 149-160,
2001.

Z. Xu, R. Min, and Y. Hu. Reducing maintenance overhead in
dht based peer-to-peer algorithms. In Peer-to-Peer Comput-
ing, pages 218-219, 2003.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCB/CSD-01-1141, UC Berkeley,
April 2001.

YF]',F.

COMPUTER
SOCIETY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

